

Meander Belt Width Procedures: Developing a Regional Model for Southern Ontario

5th International Conference on Natural Channel Systems

September 26, 2016

Imran Khan, Beacon Environmental Julia Howett and Peter Ashmore, Western University

Presentation Outline

- Background
- River corridor management in Ontario
- Current procedures and challenges
- Research context
- Study area
- Methodology
- Analysis
- Future research perspectives

Meander Belt Width: Definition

• The space a watercourse occupies (or can occupy) within a floodplain.

"Channel migration zone"

"River corridor"

"Fluvial territory"

"Freedom space"

In Ontario...

- Provincial Policy Statement (2014)
- Official Plans
- Conservation Authority (e.g. Ont. Reg. 160/06)
- ORMCP
- Endangered Species Act (2007)

MNR Technical Guide River and Stream Systems (2002)

TRCA Belt Width Delineation Procedures (2004)

Meander Belt Width: Applications

- Development setbacks
- Watercourse crossings

Meander Belt Width: Applications

Natural channel systems design

Meander Belt Width: Applications

• Regulated habitat under the ESA (2007)

Redside Dace (Clinostomus elongatus)

Meander Belt Width: Planimetric Assessments

- Historical data: topographic maps and aerial imagery
- Analysis through georeferenced overlays
- Simple overlays or advanced projection processes
- Supplementary field data

Meander Belt Width: Planimetric Assessments

Limitations

- Requires a sufficiently large watercourses
- Scale of the mapping medium not consistent
- Lower resolution of historical imagery
- Errors associated with image registration, georeferencing, and feature measurement

Meander Belt Width: Empirical Models

- Based on geomorphic and hydrologic variables
- Tool for estimation and prediction
- Used to assess altered watercourses
- Common to southern Ontario

Meander Belt Width: Empirical Models

Source	Variables	Model
Parish Geomorphic (2004)	Stream power (SP) Drainage area (DA)	M _B = -14.827 + 8.319ln (SP * DA)
Carlston (1965)	Mean annual discharge (Qa)	$M_{\rm B} = 65.8 \ {\rm Qa}^{0.47}$
Williams (1996)	Meander wavelength (λ) Radius of curvature (Rc) Bankfull width (w) Bankfull depth (d)	$M_B = 0.61\lambda$ $M_B = 2.88 \text{ Rc}$ $M_B = 4.3 \text{ w}^{1.12}$ $M_B = 148 \text{ d}^{1.52}$
Annable (1996)	Bankfull discharge (Q _{bf})	$M_{B} = 56.95 Q_{bf}^{0.45}$ $M_{B} = 16.30 Q_{bf}^{0.88}$ $M_{B} = 131.26 Q_{bf}^{0.29}$
Ward (2002)	Bankfull width (w) – in feet	$M_{B} = 4.0 \text{ w}^{1.12}$
Lorenz et al. (1985)	Bankfull width (w)	M _B = 7.53 w ^{1.01}
Bridge & Mackey (1993)	Hydraulic depth (D)	$M_{B} = 59.9D^{1.8}$
Collinson (1978)	Maximum depth (D _{max})	$M_B = 65.6 D_{max}^{1.12}$
Jefferson (1902)	Bankfull width (w)	M _B = 17.6 w

Meander Belt Width: Empirical Models

Limitations

- Poor correlations (at times) between models
- Site-specific or regional relationships
- Oversimplify and generalize the processes controlling migration

The Problem in Ontario...

- Paucity of research literature on the hydrologic and geomorphic controls of and meander morphology
- Regional characteristics of geomorphology, influenced by glacial geology and partially alluvial watercourses

What geomorphic and hydrologic variables control meander belt widths in southern Ontario watercourses?

Research Objectives

- 1. Document meander morphology and meander belt width in a representative sample of watercourses in southern Ontario
- 2. Correlate interactions between meander belt width and primary variables
- 3. Develop revised meander belt width analysis and prediction tool for southern Ontario

Study Area

Credit River Watershed

- Southern Ontario
- Physiographic diversity
- Drainage basins diversity
- Data availability
- Accessibility

Methodology: Site Selection

- IWMP database
- Additional selected sites
- 40-60 sites

Methodology: Data Capture

- Mapping overlays
- Desktop measurements
- Field assessments
- Key geomorphic and hydrologic parameters

Methodology: Data Capture

Meander Belt = 73 m

Estimated Meander

Drainage Area = 15 km^2 Slope = 0.26Sinuosity = 1.27Meander Amplitude = 66 mMean Bankfull Width = 4.2 m Mean Bankfull Depth = 0.39 m

Belt = 76 m

Analysis

- Multiple regression and correlation
- Dataset discretization

Example dataset

Anticipated Outcome

- Development of empirical equation(s) that may be used in addition to, or in place of, planimetirc assessments
- Derived relations will be compared to current empirical equations for meander belt delineation
- Better calibrated empirical relations for southern Ontario watercourses

Future Research Perspectives

- Contribute to geomorphic database with additional southern Ontario watercourses
- Investigate and integrate migration analysis and hazard zones
- Consider implications for confined systems

Mr. Imran Khan, M.Sc., P.Geo., Senior Geomorphologist Beacon Environmental ikhan@beaconenviro.com

Dr. Peter Ashmore Professor Geography Department University of Western Ontario pashmore@uwo.ca